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Abstract—A new family of pyrazole and bi-pyrazole phosphine ligands are reported that perform efficiently in the Pd-catalyzed
amination reaction. Of the ligands screened, ligand 1 emerged as the most compatible for couplings involving both primary and
secondary amines with typical yields of 84–99%.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Previously prepared arylpyrrole and arylpyrazole phosphine
ligands.
Over the past decade, a considerable effort has been
focused on the development of new ligands for expand-
ing the applications of Pd-catalyzed reactions.1 In the
pharmaceutical industry, we have frequently relied on
Pd-catalyzed processes for carrying out key bond forma-
tions.2 Our industry has been particularly attracted to
recent innovations of Pd-catalyzed amination reactions,
since many potential drug candidates possess functional-
ity easily accessed through this methodology.3 A num-
ber of research groups in both academia and industry
have pursued the development of ligands for the Pd-
catalyzed amination reaction.4 However, the majority
of this work has been patented, which has encumbered
our freedom to operate in this area.5 A few years ago
Pfizer initiated a program to develop phosphine ligands
of comparable efficiency to those already recognized as
optimally designed for the Pd-catalyzed amination reac-
tion. We previously reported a series of biaryl ligands
(Fig. 1; 2–5) that are easily prepared,6 but these ligands
do not possess the general scope or exceptional catalytic
activity of Buchwald’s most efficient biaryl ligands.7

Herein we describe a phosphine ligand (1) of modular
design that has the breadth of substrate scope and cata-
lytic activity to meet the majority of our needs. We note
that the work described in this publication and our ear-
lier communications6 has not been patented and are,
therefore, in the public domain so that all parties have
free access to this technology.
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From our prior work, ligands 2, 3, 4, and 5 were shown
to perform adequately in the amination reaction,
although ligand 4 appeared to be the most general of
this set of ligands. It is readily prepared from the parent
triphenylpyrazole by introducing the di-tert-butylphos-
phine via a directed lithiation.8 Within this family of
ligands we identified 2 as a ligand that performs very
efficiently with primary amines, a difficult class of sub-
strates for which even ligand 4 was not ideal.9 We sus-
pect that the excellent activity of this ligand is due to
the two ortho substituents on the biaryl system, which
block potential palladation of the arene and create a
severe steric environment to promote reductive elimina-
tion.10 Another advantage of ligand 2 (and 3) is that the
pyrrole nitrogen cannot complex to the Pd as readily as
the pyrazole nitrogen in ligands 4 and 5. We suspect that
the less reliable activity of ligands 4 and 5 is due to nitro-
gen chelation, which ultimately makes these ligands
incompatible with weak bases and other reaction condi-
tions. Despite some clear advantages to the design of
ligand 2, we elected not to continue further studies with
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this particular ligand (2) due to the difficulty that we
encountered in its preparation (a problematic lithia-
tion/trapping with di-tert-butylchlorophosphine).
Instead, we moved on to a design (7) that would avoid
binding of the Pd to the heterocyclic nitrogens by intro-
duction of the phosphine on the pyrazole of the biaryl
system via a facile directed lithiation.

We began by preparing a series of ligands similar to 7,
which possess a pyrazole appended to an arene (Scheme
1).11 Related ligands, using heterocycles other than pyr-
azole in the biaryl system, have been prepared by Degus-
sa and are highly efficient in the Pd-catalyzed amination
reaction.12 For our series, pyrazole serves as an ideal
handle for introducing the phosphine via directed lithia-
tion. Of these ligands, 7 is fairly general in scope (Table
1) but for certain substrates reduction side products pre-
dominate. The reactions were conducted with 0.0025
equiv Pd2(dba)3, 0.015 equiv 7 and 2 equiv KOH or
1.25 equiv NaOtBu in 1.0 M tert-amyl alcohol as sol-
vent. KOH and NaOtBu are interchangeable as bases
and we observed that KOH outperforms NaOtBu in
some cases.
Table 1. Aryl amination reactions of primary and secondary amines with ar

Amine Ligand

Br

NH2

1 99
7 96

O
NH

1 99

H
N

1 86
7 96

NH2 1 95
7 99

NH2
1 84
7 90

NHMe
1 96
7 94

NH2Ph

Ph
1 95

Yields represent isolated, purified product.
a Conditions: 1.25 equiv amine, 1 equiv aryl halide, 0.0025 equiv Pd2(dba)3

alcohol/water as solvent at 90 �C.
b Used 2% Pd.
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Scheme 1. Synthesis of pyrazole phosphine ligand 7.
The preparation of 7 requires only two steps, but the
synthesis requires a high temperature cross-coupling
that is difficult to drive to completion and provides
product 6 as an oil, which does not allow for a clean
up prior to the lithiation. Because this process looked
to be challenging to scale up, we decided to pursue the
design of a ligand that would still have a related biaryl
architecture but would avoid this assembly strategy.
Our key design considerations were blocking the biaryl’s
ortho positions to palladation and utilizing a readily
assembled crystalline core amenable to directed lithia-
tion. The ligand we identified, which met these criteria,
was 1.

We were attracted to triphenyl-bi-pyrazole (10) derived
ligands based on our past experience with this type of
crystalline core (ligands 4 and 5). With triaryl-bi-pyr-
azole-type ligands, we were able to accomplish facile
lithiation on the less substituted pyrazole, which simpli-
fied their synthesis, and were able to avoid the issue of
N–Pd coordination that plagues ligands 4 and 5 during
coupling reactions. The preparation of 1 requires 4
steps, and is shown in Scheme 2. Each step is amenable
to scale up, all raw materials are commodities, and the
modular synthesis allows for modification of the substi-
tuents to probe structure–activity relationships within
this family of ligands. The first step of the synthesis
involves bromination of dibenzoylmethane.13 On scale
we elected to use pyridinium tribromide rather than bro-
mine, due to the ease of handling the solid brominating
reagent. The reaction is carried out in acetonitrile and
upon completion, the product is crystallized from solu-
tion prior to quenching the reaction with sodium bisul-
yl halides catalyzed by Pd2(dba)3 with phosphine ligands 1 and 7a

Aryl halide (%)

Cl

CF3

Cl Cl

MeO

99 97 99
99 85 93

94 93 99

88 60 <5
98 95 <5

98 95 99
80 99 96

79 93 95
79 40 87b

98 87 93
88 96 94

99 92 98

, 0.015 equiv ligand, 2 equiv KOH or 1.25 equiv NaOtBu in t-amyl
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Scheme 2. Preparation of bi-pyrazole phosphine ligand 1.
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fite.14 The brominated diketone (8) is then alkylated
with pyrazole in NMP at ambient temperature.15 Once
the alkylation is complete, water is added to ensure com-
plete crystallization of the product, which is directly iso-
lated from the reaction mixture. The second pyrazole
ring is formed by condensation of 9 with phenylhydr-
azine in methanol and acetic acid.16 In the absence of
acetic acid a substantial amount of retro-aldol products
are formed rather than the desired condensation pro-
duct. As the condensation progresses under our opti-
mized reaction conditions, the product crystallizes
from solution. To maximize the recovery of the product,
diisopropyl ether is added to the reaction mixture prior
to filtration of crystalline 10. To complete the synthesis,
bi-pyrazole 10 is lithiated with n-BuLi at �78 �C in THF
over 1.5 h.17 During lithiation, the lithiated pyrazole
crystallizes from solution as a white suspension. The
anion is trapped with di-tert-butylchlorophosphine after
gradual warming to ambient temperature to afford 1
as a crystalline solid.18

When screening ligand 1, we immediately recognized
that we had developed a robust catalyst with a relatively
broad substrate scope (Table 1) that included arylchlo-
rides.19 We had initially screened primary amines, which
tend to be the most problematic since they are more sus-
ceptible to b-hydride elimination, and they tend to form
bis(amine)-Pd complexes, which impede catalysis.20

With our past ligands (including 7), the combination
of phenethylamine and chlorobenzotrifluoride resulted
in low yields due to substantial reduction side products.
With the current ligand (1), this issue with reduction side
products is diminished, as realized by the 93% yield.
Most of the model substrates coupled efficiently using
potassium hydroxide (2 equiv) as the base in tert-amyl
alcohol (1.0 M) and water (0.04 M) as solvent at
90 �C, at the loading of 0.25 mol % Pd2(dba)3 with
1.5 mol % 1.21 Typically, the couplings are complete
within 30 min for couplings involving 2,6-dimethylani-
line or morpholine, while couplings utilizing primary
amines are allowed to heat for 2–5 h before reaching
completion. Of the substrates screened, only some reac-
tions with dibenzylamine led to low yields. Virtually no
product is formed in the coupling between dibenzyl-
amine and chloroanisole,22 and a very modest yield is
realized when dibenzylamine is coupled with chloro-
benzotrifluoride. Other substrate combinations with
issues include couplings with bromonitrobenzene, which
result in no conversion, most likely due to electron
transfer to the Pd, and couplings with 2-chloropyridine,
which result in incomplete conversions with all amines
at low catalyst loading.23 Coupling reactions with ben-
zophenone imine are unreliable due to the variable levels
of ammonia present in the starting imine that inhibit the
Pd catalyst; however, benzophenone hydrazone was
found to be an ideal substrate when coupled with 4-bro-
mo-tert-butylbenzene (97% isolated yield). Regarding
the Pd source, we found that Pd2(dba)3 is more reliable
than Pd(OAc)2, especially with primary amines.24 A
minimal amount of water is added to the reactions to
help dissolve the base (KOH) and the salt by-products.
Adding more water does slow down the reaction rate
but does not ultimately limit the extent of conversion
that is achieved.

We intend to continue to explore the reaction scope of
ligand 1 to identify in which cross-coupling applications
it is most efficient, and we hope to identify a more
reliable ligand for heterocyclic substrates (most notably
2-chloropyridine). We are considering bidentate ligands
as a viable alternative for use with the heterocyclic sub-
strates, especially in light of prior reports suggesting that
BINAP25 or Xantphos26 can be highly effective with
chloropyridines.27 Overall, the modular design of ligand
1 should enable facile preparation of derivatives to
probe other members of this family of ligands and opti-
mize our design to specific substrate classes.
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